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Peskin’s Immersed Boundary Method has been widely used for simulating many
fluid mechanics and biology problems. One of the essential components of the method
is the usage of certain discrete delta functions to deal with singular forces along one
or several interfaces in the fluid domain. However, the Immersed Boundary Method
is known to be first-order accurate and usually smears out the solutions. In this paper,
we propose an immersed interface method for the incompressible Navier—Stokes
equations with singular forces along one or several interfaces in the solution domain.
The new method is based on a second-order projection method with modifications
only at grid points near or on the interface. From the derivation of the new method, we
expect fully second-order accuracy for the velocity and nearly second-order accuracy
for the pressure in the maximum norm including those grid points near or on the
interface. This has been confirmed in our numerical experiments. Furthermore, the
computed solutions are sharp across the interface. Nontrivial numerical results are
provided and compared with the Immersed Boundary Method. Meanwhile, a new
version of the Immersed Boundary Method using the level set representation of the
interface is also proposed in this papere 2001 Academic Press

Key WordsNavier—Stokes equations; interface; discontinuous and nonsmooth so-
lution; immersed interface method; immersed boundary method; projection method;
level set method.

1. INTRODUCTION

In this paper, we consider the incompressible Navier—Stokes equations in a boun
domain$2 ¢ R? that contains one or several interfadds):

d
p(al:+(u-V)u)+Vp=uAu+G+F, X € Q, (1.1)
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V-u=0, (1.2)
Ulpe = U, BC, (1.3)
ux, 0) =ug, IC. 1.9

Here we writeF andG separately to distinguish different irregularities. The singular forc
F has support only on the immersed interfat¢) and has the form

F(x,t) = / f(s, t)8(x — X(s, 1)) ds, (1.5
')

whereX(s, t) is the arc-length parameterizatianig the arc-length parameter) of the inter-
face, and (s, t) is the force strength. The above integral is over the entire interfacé,and
is the two-dimensional Dirac functiofy(x) = §(X)8(y) with x = (X, y). The termG may
have a finite jump across the interface, but is bounded and piecewise continuous in the e
domain. Throughout this paper, we simply assume that the demsityl and the viscosity

w is a constant. Figure 1 is an illustration of the geometry and the local coordinates for
problems discussed in this paper.

Although we assume that the density and the viscosity are two constants, the model (1
(1.5) has many applications, for example, cardiac blood flow [32—34], platelet aggregat
and coagulation [9, 10], swimming microorganisms [8], biofilm formation [6], suspensic
flows [38], and others; see also [35] for a brief review.

In the 1970-1980s, Peskin [32, 33] developed the Immersed Boundary Method
method) which used the model (1.1)—(1.5) to simulate the blood flow through heart valv
The valve leaflet (the interface) exerts some force into the blood (the fluid) and mo
along with the fluid simultaneously. Peskin’s IB method has become a standard numel
method for interface problems that involve singular forces along one or several interfa
The method has been applied successfully to many fluid and biological problems.

However, it is also known that generally the IB method is only first-order accurate f
nonsmooth but continuous quantities. Different variations of IB method have been propo
to improve the accuracy. For example, Lai and Peskin [18] proposed tonaally second-
order IB method with reduced numerical viscosity and applied the new method to simul

FIG. 1. A diagram of the geometry for the interface problems discussed in this paper. Weamskr to
denote the unit normal and tangential directions of the interface, respectively; anidhe angle between the
normal direction and the-axis.
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the flow around a circular cylinder. By formal second-order accuracy, the authors me
that the scheme would be second-order accurate if the delta function is replaced by a f
smooth function, independent of the mesh. The numerical result has a good agreement
the experimental data; however, thadly second-order accuracy in the maximum norm,
which is the goal of this paper, has not been achieved there. More recently, Cortez
Minion [5] proposed another high-order scheme using the smoothed blob projectior
compute the force. Their method shows better accuraty @ndL, norms and preserves
the volume better than the original IB method. Nevertheless, both approaches describe
[5] and [18] use the discrete delta function which usually smears out the solution across
interface.

In contrast to the discrete delta function approach, the immersed interface method (I
[20-23, 25], which incorporates the jump conditions into the finite difference schen
was developed to improve the accuracy of the IB method and to obtain sharp interf
solutions. The IIM method has been shown to be second-order accurate in the maxin
norm for elliptic problems [26] and has been applied to Stokes flow [21] and other movi
interface/free boundary problems [14, 27, 28]. In this paper, we extend the [IM methoc
the full Navier—Stokes equations (1.1)—(1.5) and compare the new method with differ
versions of the IB method.

The Ghost Fluid Method (GFM), which is also a sharp interface method that uses
jump conditions in the solution and the flux, has been developed by Fedkiw, Liu, Ka
and their group for elliptic interface problems [29]. The GFM is simpler than [IM an
the resulting linear system of equations for the self-adjoint elliptic equations is symmet
positive definite. The trade-off is that the solution is first-order accurate in the maximt
norm. The method has been applied to multiphase incompressible flow [16] and two ph
incompressible flames simulations [30].

Another sharp interface method in which the jump conditions incbefficientsvas
taken into account in constructing the algorithm was developed in [11] and [12] for t
incompressible Navier—Stokes equations.

The method developed in this paper is &rarp interface modelBesides the differ-
ences in the methodology, our method distinguishes from [16, 29, 30] in accuracy, ¢
distinguishes from [11, 12] in dealing with different problems. There are some other mc
els and methods for interface problems, notablypthase field modeind the finite volume
method, for example, [36]. Each model has advantages and disadvantages, and may
specific applications. Itis easy to compute surface tension and curvature with sharp inter
models. It is also an advantage to use the level set method with sharp interface model:

The rest of the paper is organized as follows. In Section 2, we introduce the jump cor
tions for (1.1)—(1.5). In Section 3, we present the IIM scheme for (1.1)—(1.5) which modifi
a projection method by adding some correction terms. In Section 4, numerical results
nontrivial examples including one with a moving interface are presented and analyzec
new version of the IB method with the level set formulation is also proposed there. So
conclusions will be given in Section 5.

2. JUMP CONDITIONS ACROSS THE INTERFACE

Because of the singular forces, the velocity of the solution to (1.1)—(1.5) is typically no
smooth, and the pressure may be discontinuous, across the interface. The jump condi
of the velocity and the pressure are quantitatively described in the following theorem.
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THEOREM1. Let(X,Y) be a pointon the interface. LEtbe a smooth closed interface
within the domain. Let the unit outward normal directionrbe- (cosf, sind), whered is
the angle between the outward normal direction and the x-axis. Then we have the jt
conditions

[ul =0, [pun] = —for, (2.6)
. af,
[p] = f1, [pa]l = 5 T [G]-n, (2.7)

wherer = (—sing, cosd) is the unittangent directigrand f, and f, are the force strengths
in the normal and tangential directionsespectively

fi(s,t) = fi(s, t) cost + fa(s, t) sing,
A 2.8)
fo(s, 1) = — fi(s, 1) Sin + fo(s, t) cosh.

The jump[-] is defined as the difference of the limiting value from outside of the interfa
and that from the insideand s is the arc-length parameter of the interface.

The proof can be found in [19, 21] with minor modifications.

2.1. Additional Interface Relations

In this subsection, we derive some additional interface relations by differentiating 1
known jump conditions in Theorem 1 along the interface, and by making use of the n
mentum equation (1.1). These interface relations are summarized in Theorem 2 and
be used in our new numerical scheme. For interface problems, most physical quant
along/across the interface are associated with the normal and tangential directions. T
we introduce a local coordinate system which lies along those directions, and derive i
interface relations in the local coordinate system.

THEOREM2. Under the same notations and assumptions as in Theorera define the
local coordinates atX, Y), a point on the interfaceas

&= (- X)cosd + (y—Y)sing, .
n=—(X-— X)sind + (y — Y) cost. (2-9)

Thenthe interfac€ can be represented l§y= x (n) inthe neighborhood ak, ) = (0, 0),
which satisfieg (0) = 0, x’(0) = 0, andx”(0) = «, the curvature of the interface &0, 0).
The following interface relations are true éX, Y):

- af,
[p]l = f1, [pe]l = n

[ul =0, [uu]=—fr, [u]=0
(2.10)

S af -
[ty =« for,  [pug] = _8_r;2t — K fon,

[wuee] = =[puy,] + [pe] n+[py]  + [u]u-n —[G].
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The proof of the theorem is quite technical, long, and tedious. However, it is straightfc
ward if we know the key ideas. Therefore, we will provide only the outline of the proof.

Sketch of the proof. The first four equalities are directly copied from the jump condition:
in Theorem 1. Let the interfacE be & = x () in the neighborhood of¢, ) = (0, 0).
Then we know thag (0) = 0, x’(0) = 0, andy”(0) = «. Differentiating u] = 0 along the
interface and using’(0) = 0, we get the fifth equality. By differentiatingif = 0 along
the interface twice and using’(0) = 0, and x”(0) = «, we get the sixth equality. By
differentiating the fourth equality along the interface and ugiflngz xn, we get the seventh
equality! Finally, by expressing the momentum equation (1.1) in the local coordinate (2.
we get the last equality.

2.2. Projection of the Jump Relations on x- and y-Direction

In order to be numerically useful, those interface relations in (2.10) in the local coor
nate (2.9) are transformed into the jump relations in the Cartesian coordinatesuSgce
continuous, we have

[ux] = [ug] cosé — [u,] sind,

[uy] = [ug] siné + [u,] coso, X
A1
[Uxx] = [Uge] COS O — 2[ug,] cosd sind + [u,,] sin?6, N

[Uyy] = [Uge] SIN*6 + 2[ug,] cosh sind + [u,,] cos’ 6.

Using these identities and the interface relations in (2.10), we can easily write dfwn |
[ux], [uy], [uxx], [uyy], [R], [ Px], and [py] at any point on the interface in terms of the force
strength and its derivatives, and the geometric information of the interface.

3. THE NUMERICAL ALGORITHM

Our numerical method is based on the projection method for solving the incompressi
Navier—Stokes equations with careful treatment at grid points that are near or on the interf
There are several versions of the projection method for solving the incompressible Navi
Stokes equations; see for example, [1, 15, 17] and many others. The projection method
we used in this paper is the one described in [2] which is based on the pressure increr
formulation of [1, 15] with an additional accurate pressure correction (in [2]; the meth
is denoted by Pm II). Our key modification to the projection method (Pm Il) is to ad
some correction terms at grid points near or on the interface. Those correction terms
determined from the interface relations that we stated in the previous sections.

For simplicity, we assume that the domé&lns a rectangled, b] x [c, d], and the spatial
spacing ih = (b —a)/M = (d — ¢)/N, whereM andN are the number of grid points in
the x andy directions, respectively. Here, a standard uniform Cartesian grid is used. C
method from time" to t"*! can be written as

ut —un

At

+ (U Vo™ E = Vap™? 4+ £ (ApU* 4 AU + G2 4 CT
2
(3.12)
Uy = UE+1,

LIn our notation, a circle has negative curvature.
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where(u - th)”+% is approximated using
n+1 3 n n 1 n—1 n—1 n
u-Vvau"z = 5(“ - Vpu" — 5(” VUt 4 Co. (3.13)

The projection step is the following:

Vi - U* a¢n+l

App"t= —— 4+ CI, =0, 3.14
ho I T o (3.14)
u™tt = Ut — AtV 4 CL. (3.15)
VPt = Vihp" 2 + Vgt 4 CL. (3.16)

In the expressions aboveéy, andAy, are the standard central difference operators regardle
of the interface, thus,

Al — Uit1,j —Ui—1j Uij+1 — Uij-1
hthij = oh  °  2h :
Ui—1,j + Ui j-1+ Uy j + Ui jr1 — AU
Ahui,— = h2 .

It is clear that the modifications that we made to the projection method are those correc
termsCy at grid points near or on the interface.

3.1. Determining the Correction Terms

At a regular grid pointx;, yj), meaning that all the grid points in the standard centere

five-point stencil are from the same side of the interface, we use the standard cer
difference scheme to discretize Egs. (1.1)—(1.4) without any correction; tiGj} 4s 0.
At an irregular grid pointX;, y;), we need to determine the correction terms so that th
finite difference scheme can be as accurate as possible. We assume that the interface
grid line between two grid points no more than once. This is guaranteed if the interfac
expressed in terms of a level set function.

First, we establish the following lemma, which is the basis for determining the correcti
terms.

LEMMA 1. Let ux) be a piecewise twice differentiable function. Assume tfgtand
its derivatives have finite jumps], [ux], and[ux«], at X* = X + a¢h, =1 < « < 1, thenthe
following relations holdl

, Cx, @) o
Uty —ux—hy _ fUOOF T FOMD TOse st 6
2n u'(x) — C(;r’]“) +0(h?), if -1<a <0,
e Zl:](zx) Ul u’(x) + C(;:éa) + 0O(h), (3.18)
where
(1 — |a|)*h?
Cx, ) = [u] + [u] @ — laDh + [u] ———— (3.19)

2 )
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and the jumps are defined as

liMy_ ey UX) — limy_y:_u(x), if 0<a <1,
[u] = (3.20)
My - UX) — liMy_yep U(X), if —1<a <O.
IimXax*jt Ux(X) = limy_ s Uy(X), If 0<a <1,
[ux] =19 _ _ (3.21)
My ye Uy (X) — liMy ey Ux(X), If —1<a <O.
My Uy (X) = My ye - Uyx(X), if 0 <o <1,
[uxx] = 1 . _ _ (3.22)
liMy sy Uyx(X) — liMy gy Uxx(X), if =1 <a <O.

Proof. Without loss of generality, we assume thatQr < 1. Thereforex — h andx
are on the same side while+ h is on the other side. We use the Taylor expansion twice
for u(x + h) atx*, then atx, as follows,

uX +h) =ux*+ 1 — a)h) = ux*+) + uy(X*+) (1 — a)h

(1 - )2h?

3
> + 0(h®)

+ Uyx (X" +)

(1— «)?h?

> +C @+ o(h®

= U(X"—) 4+ Ux (X" =) (1 — a)h 4 Uy (X" —)

(x* — x)?
2

1— 2h2
+ U () (X* =) (1 — a)h + Uxx(x)% + C(x, &) + O(h®).

= U(X) + Uy (X)(X* — X) 4 Uxx(X) + ux(X)(L —a)h

The Taylor expansion far(x — h) is

2
u(x —h) = u(x) — huy(x) + Uxx(x)% + 0(hd).

After substituting these two expansions into the left-hand sides of (3.17) and (3.18) ¢
with some manipulations, we get the desired equalities.

Remark 1. The lemma above is the basis of our numerical algorithm for determinir
the correction terms.

e The correction terms given in the lemma can be found in the literature. For examy
(3.18) is a special case in the expressions (2.22) and (2.24) in [22]. It was also deri
independently in [29] for the ghost fluid method. Equation (3.17) is a special case in 1
expressions (26) and (39) in [24]. Nevertheless, in the lemma we have “uniform” formul
for both first- and second-order derivatives; see below for the explanation.

e Lemma 1 tells us that the correction term is simply the product of the finite differen
coefficient, corresponding to the grid point from different sides of the interface in referen
to the master grid point, and(x, @) which corresponds to the singular source term. Fo
example, if—1 < « < 0, in Lemma 1, which means — h andx are on different sides
of the interface, then the correction terms égris the product of the coefficient1/(2h)
andC(x, «). Therefore, it is very easy to modify the finite difference scheme to maintain
certain order of accuracy.
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o If there are two interfaces betweéx — h, x + h), say,xj = x + a;h andxj = x +
azh, witha; < 0andw, > 0, then we just need to add another correction term, for exampl

u(x +h) —2u(x) +u(x—h)

C(X, Oll) n C(X, Olz)

2 w0+ —3 rz T oM.
ux+h)y—ux-hy C(x, 1) B C(x, a2) 2
oh =u(x)+ on oh + O(h?).

3.2. Correction Terms to the Projection Method

In our numerical scheme (3.12)—(3.16), there are several correction terms to be de
mined. For the sake of simplicity, we will only explain how to evaluate some of the correcti
terms of thex-component o]. The other correction terms can be treated in the same w:
so we omit the details here. Assume tRafx; < x* < x;1, is an intersection of the in-
terface and the-axis. The contribution t&} in the x-direction from this interface point
includes the following:

e the correction term fou"Dy pu" from the nonlinear ternu” - Vi,)u™:

3 i _ y*)\2
(6Bl =+ ] S Yoy

e the correction term fou" 1Dy ,u"~* from the nonlinear terngu"~* - Vy)u"*:

1

1 (Xi+1 — X*)
4h

([0 00a =00 + i) 2

)u“(x*, yi):
e the correction term foby p”*% from vy, p”*%:

—2% ([p" 4] + [pQ_ﬂ (1= X));

e the correction term fon(ui*_l’j — 2ufii + Ui*+1,j )/(2h?) from pApu*/2:

B . a1y (Kipr — X4
~ o ([ux+1] (Xip1 — X*) + [ulf?] “f)

o the correction term for(ul_; ; — 2u?; + Ul | )/(2h?) from pApU"/2:

n

s (Xi+1 — X*)?
2h? '

(0000 =+ i 27
We use thailinear interpolationto approximate the values afandv at (x*, y;) from the
values ofu andv at the neighboring four grid points. Such approximation is at least firs
order accurate since the velocity is continuous. Note that we have used the jump condit
att"*! to approximate the jump conditions titcorresponding to the same treatment for
the velocity boundary condition in the projection method.
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Similarly, if the interface cuts through betwegn ; andx;, we need to add the corre-
sponding correction terms as well. In this way, we take care of the correction terms in
x-direction forC}.

The spatial local truncation error of our schem®ié?) at regular grid points, bud (h)
at irregular grid points. However, since the number of irregular grid points usually is o
dimensional lower than the total number of grid points, we expect the global accuracy
still second order for the velocity, and nearly second order for the pressure. A proof
second-order convergence for an elliptic interface problem can be found in [26]; see ¢
the numerical experiments in Section 4.

Itis worth pointing out that the modifications that we made to the projection method or
affect the right-hand sides of the original projection method. Therefore, our method d
not change the stability nature of the original projection method, which is stable if the CI
condition is satisfied.

Once we have computed those correction terms, we need to solve two Helmholtz equat
to getu* in (3.12) and one Poisson equation to ¢&t* in (3.14). The discrete systems
for the Helmholtz and Poisson equation are symmetric and positive definite, and are so
using the fast solvadWSCRTrom Fishpack.

3.3. Further Correction Near the Boundary and the Interface

Using the projection method with the correction terms added at irregular grid points, !
have observed that the velocity is second-order accurate but the pressure is only first o
The largest error in the pressure appears near the boundary or the interface. As analyz
[2, 7,37, 39], this is due to the inherent numerical boundary layer in the projection meth
In [2], see also [17], a correction scheme is proposed which is

pret = pE 4 g™ — (VU4 O, (3.23)

where¢"t1, in our notation, is the solution of the Poisson equation of (3.14)—(3.15) frol
t" to t"*1, CJ again is a correction term only needed at irregular grid points near or «
the interface. This correction does dramatically improve the accuracy for the pressure
Section 4).

In our implementation, we use the centered difference scheme to compute the correc
term Vj, - u* in interior grid points. Then we use an extrapolation scheme to extend t
guantity to the boundary of the rectangle, for example, at the boundarg,

Vi U0, ) = 3Vh-U'(L, ) — 3V 02 )+ Vi - U3, ). (3.24)

Near the interface, even though the velocity is second-order accurate, théteury At
may have only zeroth order accuracy since the error may not be smooth near the interf
and At ~ h. This will reduce the accuracy of pressure to first order. Our remedy to th
problemisto replac®y - u*/At atanirregular grid point by the same quantity at the neare:
regular grid point. This again improves the accuracy of the pressure. The same techn
was also used independently in [4] where a second-order accurate symmetric sharp inte
method for the Poisson equation with Dirichlet boundary conditions was proposed.

We will call the numerical method described in this section as the projection-1IM methc
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4. NUMERICAL EXAMPLES

In this section, we present some numerical experiments for solving the velocity &
presure in (1.1)—(1.4) at some fixed timerhe velocity, and the presure up to a constant
are uniquely determined by the initial condition&, 0), p(x, 0), andI'(s, 0); the initial
interface; the boundary conditiarn(x, t)|;q; and the force strengtthf], f,) in the normal
and tangential directions along the interface.

All the calculations in this section were perfomed at North Carolina State Universi
using Sun workstations. Most simulations are done within minutes to a couple of ho
depending on the number of grid points. Unless specified differently, we use a level
function to represent the interface; see (4.40).

4.1. Example 1: A Noninterface Problem

We start our numerical tests by checking the accuracy of the projection method fc
regular problem, and use the result as the basis for comparing different algorithms for
interface examples. The following exact solution is taken from [40]:

u(x, y, t) = —sirf(rx) sin(2ry) cost,

(4.25)
v(X, Y, 1) = sirf(ry) sin(27x) cost.
Define a function/ by
2\ i 2\ i 16
¥ = | (X=X sin(@X)(y — y°) sin(ry) — — | cost. (4.26)
b
The pressure then is
d
pXx.y. 1) = —a—lf +vAY. (4.27)

The force termG is determined from the exact solution. The domain is the unit squa
Q =0, 1] x [0, 1]. Inthis example, we ha\/g # 0 on the boundary. Thus, the numerical
boundary layer might deteriorate the accuracy of the pressure.

Table | shows the grid refinement analysig at 10. Throughout this paper, the error
computed in the maximum norm is up to the boundary, meaning that the error at the boun
is also taken into account. The order of accuracy is defined as

log[E(N)/E@2N)]

order=
log 2

(4.28)

The pressure has been adjusted by some constant that minimizes the error in the maxi
norm. We can see the velocity is second-order accurate, but the pressure is first order (
the original projection method. However, if we add the correction term in (3.23), then t
pressure is very close to second-order. The last column in Table | is the errors of the pres
with the correction term in (3.23). While it is not fully second-order accurate, it is bett
than the original projection method without the correction. Away from the boundary, t
pressure is second-order accurate.
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TABLE |
The Grid Refinement Analysis of the Projection Method withp = 1, At = h,
for Example 1 att = 10

Projection method without (3.23) With (3.23)
N IEa(W oo Order IE1(P)llo Order IE2(P)lleo Order
32 27021x 10* 0.0608 32871x 102
64 83429x 10°° 1.6955 0.0269 1.1785 PA32x 1078 1.8303
128 22471x 10°° 1.8925 0.0109 1.2975 .3825x 1078 1.4936
256 57841x 10°® 1.9580 0.0045 1.2665 A341x 104 1.5333

Note.The second columiE;(u)||., and the fourth columi{E;(p)|. are the errors of the velocity
and pressure using the projection method without correction in (3.23), respectively. While the velocity is
nearly second order accurate, the pressure is roughly first order. The sixth dpfep) || is the error
for the pressure using the projection method with correction in (3.23). While it is not entirely second order,
the accuracy of the pressure has been improved. The velocity (not listed) remains second-order accura
with smaller errors.

In practice, it is difficult to get fully second-order accurate results for pressure for sor
problems using projection methods with a single Cartesian grid. It may be due to
difficulty in dealing with the numerical boundary layer and the four corners of the rectangu
domain. We did notice that, however, the full second-order accuracy was achieved
pressure in [2] for the channel flow and a problem with homogeneous boundary conditic
We think it may be possible to achieve full second-order accuracy for pressure if a suitz
extrapolation scheme is used to evaluate the correction term at the boundary, particular
the four corner points. Usually, it is more accurate to use the MAC grid than to use a sin
Cartesian grid. So we believe that it is possible to achieve full second-order accuracy u:
the MAC grid. The trade-off is the increased complexity in the implementation.

4.2. Example 2: An Interface Problem with a Constant Jump in the Pressure

In this example, we consider a fixed interface,

(x—05)? (y—05)?
2 T
in the domain [01] x [0, 1]. The normal and tangential force strength dfe= 10 and
f, = 0, respectively. We also s&; = 0 andG, = 0. The solution now is given by

1, (4.29)

C. if ®-09" | =097 1.,
u=0 v=0 p= 2 (4.30)
—10+C, if 359904 U208 g <,

whereC is an arbitrary constant. Here, we compare our method with Peskin’s IB meth
using the discrete cosine delta function. Depending on how the interface is represen
there are two different versions of the IB method.

4.2.1. The Lagrangian particle approachln this traditional approach, the interface
is represented by a set of Lagrangian poisk =1, 2, ..., Ny, whereNy is the total
number of the particle points and is usually chosen in such a way that

maxAsq = max|| Xgr1 — Xkl ~ h.
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The forces defined on those particle points are then distributed to the nearby grid pc
(X, y) by the formula

Np

D (808, (X = Xi)du (Y — Yi) As,
k=1

whereé,, is the one-dimensional discrete delta function

5.0 — {‘&U(l—i—cos(nx/Zw)), if |X| < 2w, @31)

0, if |X| > 2w.

Although there are other discrete delta functions in the literature, the computational res
are not much different for two- and three-dimensional problems. The most common choi
of w is h, the spatial mesh size. As we can see, whegets larger, the cost to spread the
singular force to the grid points increases significantly. Our numerical tests for this and of
examples show that the accuracy of the computed velocity remains pretty much the s
for different choices ofv. However, the pressure, if it is discontinuous, smears out mo
widely asw increases. Therefore, the best choicaya$ h. The sixth column in Table Il is
the grid refinement analysis for the velocity which is clearly first-order accurate.

4.2.2. The level set representatiorif the interface is represented by the zero level se
of a two-dimensional functiop(x, y) as in (4.40), it is not straightforward to use the 1B
method directly. However, if the tangential component of the singular force is zero, th
we can write

f(S)82(x — X(s)) ds = f - N8 () Vop; (4.32)
()

see [3] and others. It is easy to apply the discrete delta function in the above fo

TABLE Il
The Grid Refinement Analysis and Comparison of the Three Projection-IB Methods
for Example 2 with ¢ = 0.1,a = 0.35,b = 0.25, andAt = h

Level Set IB widthw = h Level Set IB widthw = +/h Lagrangian IB widthw = h
N TEW s Order TEW s Order TEW oo Order
32 12434x 10 4.9254x 1078 5.1204x 1072

64 6.3619x 1072 0.96673 29594 x 1073 0.7349 25839x 1072 0.9867
128 40730x 1072 0.64339 11062x 1073 1.4197 12968x 1072 0.9929
256 43059x 1072 0.09459 41558x 10 1.4124 65055x 1072 0.9952

Note.The initial data is taken from the solution in Example 1. The second and fourth columns are the err
of the computed velocity using the level set function with widttbeingh and+/h, respectively. The sixth
column is the error of the computed velocity using the original IB method witheingh. Generally, the
velocity is first-order accurate. The pressure which is not listed in the table has zeroth order accuracy beca
itis smeared out.
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Unfortunately, the choice of the width of the discrete delta function is crucial for the |
method. Ifw = h, the IB method barely converges; see the second column of Table II.

Hou [13] may be the first one to note this and suggest that the best choice of the widt
w = +/h. This has also been confirmed in our numerical tests; see the fourth column
Table Il. Howeverw = +/h is much larger thah if h is small. The IB method smears out

the pressure and shows zero-order convergence for the pressure. Since the width has
taken asw = +/h, we cannot guarantee the right pressure even at those grid points that
away from the interface.

A remedy to the problem is to use the projections of irregular grid points of a particul
side, say (X, y) < 0, on the interface as the control points. Then the Peskin’s original |
method can be applied with those control points. In [14, 28], we described in detail h
to find the projection of an irregular grid point on the interface. Using this new approac
we still can use a thin laydrw = h) of the interface in the IB method, so that the solution
will only be smeared out in the thin layer while we can keep the advantages of the level
method.

4.2.3. The grid refinement analysis and comparisofable 1l lists the comparison of
three different versions of the IB method using the particle approach and the level set f
tion. We have also tested the example with different but modedifferent major axisx
and minor axid, and different initial conditions. All the results are qualitatively similar.
In Table Ill, we show the grid refinement analysis of the projection-1IM method deve
oped in this paper. Without the modification of the pressure equation (3.23), the veloc
in the second column is second-order accurate, while the pressure in the fourth colt
is first-order accurate with the largest errors occurring near the boundary or the interfz
With the correction term in (3.23) added, we see second-order accuracy for both the
locity and the pressure. Since the pressure is piecewise constant in this case, the acc
for the pressure is much better than second order. However, this is not true for gen
problems.

In a further numerical experiment, we revisit Example 1 but add a singular forcefterm
10 to the Navier—Stokes equations in (1.1). The exact solution for the velocity is the sa

TABLE IlI
The Grid Refinement Analysis of Projection-1IM Method for Example 2. The
Parameters arep = 0.1,a= 0.35,b = 0.25, and At = h

Projection 1IM without (3.23) Projection 1IM with (3.23)
N IEW s Order IE(P) Order IE(P s Order
32 16412x 104 1.5785x 10?2 9.9058x 1073

64 39857x 10°° 2.0418 79281x 1073 0.9935 11533x 1073 3.1026
128 98987x 1076 2.0095 39676x 1073 0.9987 15946x 107* 2.8544
256 12367x 1076 2.0008 19842x 1073 0.9997 24832x 107° 2.6830

Note.The first and third columns are the errors of the computed velocity and the pressure without
the correctiontermin (3.23), respectively. We can clearly see that the velocity is second-order accurate
while the pressure is first-order because of the boundary layer. The sixth column is the error of the
computed pressure using the same method but with the correction term for the pressure in (3.23).
The accuracy actually is better than second-order because of the fact that the pressure is piecewise
constant. The computed velocity (not shown in this table) with the correction is also more accurate
meaning a smaller error constant.
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Compuied -p(xy) using [{M, M=64

Computad ~p(x,y) using IBM, w=h, Ma64.
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FIG. 2. Computed pressure for Example 1 with an added force threa 10 using a 64 by 64 grid. (a) The
result computed using the projection-1IM method which catches the jump in the pressure. (b) The result comp
using the IB method with the interface represented by a level set furiatiea +/h). The width of the discrete delta
function isw = +/h. (c) The result computed using the original IB mettiad= h). The error for the pressure is
O(2) for both (b) and (c).

as in Example 1, but the pressure is the sum of the pressure in Example 1 and the piece
constant in (4.30). The analysis and observations are similar to the discussions ab
Figure 2a shows the pressure computed using the projection-IIM method. The compt
pressure has the right jump up to second order. Figures 2b and 2c show the pressure com
using the 1B method with the level set representation of the interface /h) and the
original IB method with particle representation of the interfgee= h), respectively. In
Fig. 2b, we see that the pressure is smeared out by the wigthy/h while in Fig. 2c, we
see larger errors but a thinner lay@ar = h) near the interface.

For this test problem, our projection-1IM method is faster compared with the 1B methc
The reason, we believe, is the triple loop of the IB method to spread the forces to nee
grid points.

4.3. Example 3: An Interface Problem with Nonconstant Jump in the Pressure

In this example, we want to check how well our method can handle a honconstant ju
in the pressure and a finite jump@ The interfacd” and the domai2 are the same as in
Example 2.
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The source tern@ is the gradient of a function(x, y), which is the solution of the
following

Ag=0, (X,y)€eQ, % =0, (4.33)
AN 5o
aq
[allr =x+Yy, [8—] =0 vy el (4.34)
nlir

The functionq(x, y) andG = Vq are computed using the IIM method [25] with a 512 by
512 fine grid. Note that frong] =0andp] = x +, itis easy to derive

[G1] = [ax] = sirPd —sind cosd, [Gy] = [gy] = cog @ — sind cosd,

wheren = (cosd, sind) is the unit normal direction df' pointing outward.
The full Navier—Stokes equations of Example 3 are (1.1)—(1.5) with the followin
parameters

upe =0, u=1 G=Vq(,Yy),

f,=0, fi=x+y, Xy eTl,

with initial conditions foru and p.
For this example, we do not know the exact solutions. However, the steady state solu
for this example is

Jim u(x.t) =0, lim p(x, t) =qX).

In Table IV, we show the grid refinement analysis forsteady state solutiosbtained using
the projection-1IM method dt= 10. The initial velocity is taken from (4.25) in Example 1,
while the pressure is

Po(X, y) = cosmtx cosry + q(X, Y).

In this way, we guarantee the initial pressure has the right jupip=] f1. We see that the
projection-1IM method gives a second-order accurate solution for both the velocity and
pressure. The results are qualitatively the same if different initial conditions are used

TABLE IV
The Grid Refinement Analysis of Projection-IIM Applied to Example 3
with g =1, At = h,att =10

N 1Eiim (Wl Order 1Eim (Pl Order

32 24930x 1075 5.1614x 104

64 35197x 1078 2.8244 84365x 105 2.6131
128 46660x 1077 2.9152 16308x 1075 2.3710
256 35073x 1078 2.9332 57023x 10°® 1.5160

Note.The initial velocity is taken from (4.25) in Example 1. The initial pressure is taken
as cosrx coswy + q(X, y).



IIM FOR NAVIER-STOKES EQUATIONS 837

TABLE V
The Grid Refinement Analysis of Projection-1IM Applied to Example 4
with g = 0.02, At = h, att = 10; Second-Order Convergence Is Achieved

N 1Eim (W]l Order 1Eim (P) 1o Order

32 24215x 1073 1.1513x 102

64 53547x 104 2.1771 32255x% 1072 1.8357
128 14970x 104 1.8388 91307x 104 1.8357
256 36173x 1075 2.0491 19727x 1074 2.2106

long as the jump condition ip is initially satisfied. Note that cosx cosry satisfies the
homogeneous Neumann boundary condifiop- n = 0 on the boundary. If we take the
initial pressure from (4.27) in Example 1, then the computed pressure is only first-or
accurate sincef] # f1 initially while the velocity is still second-order accurate.

4.4. Example 4: Circular Flow with a Line Force

Now we consider an example with nhonsmooth velocity. The exact solution is

_fhy(E=2y) ifr> 3,
ux,y,t) = {0 r < % (4.35)
_fh(=2+2x) ifr >3,
v(X, Yy, 1) = {0 r < % (4.36)
(X, y, ) =0, (4.37)

wherer = /x2 + y2, The interface is the circle= % and the solution domainisql, 1] x
[—1, 1]. Itis easy to verify that the velocity satisfies the incompressibility constraint, and
is continuous but has a finite jump in the normal direction

[un] = [u ] = =2h(t)sing, [vn] = [vr] = 2h(t) coss,
across the interface. Thus, the normal and tangential force strength are
fi=0, f,=-2h).

Note thatu, - nis not zero on the boundaryﬂjil‘tj # 0, which may affect the performance of
the projection method Outside of the interface = 0.5, the nonzero and bounded source
termG is derived directly from the exact solution using Maple. There is also a finite jun
in G.

With h(t) = 1, our method converges to the steady state solution. The grid refinem
analysis reveals similar results as in Example 3. In our time-dependent test, wettake
1 — e t. We present the numerical resultstat 10 in Table V and plot th&-component

2|t seems that the projection method used here requires to be zero along the boundary. Numerical tests
showed that if); - n is not zero, then the velocity still converges but not with second-order accuracy; the press
may not converge at all for the projection methodiifis large on the boundary. However, some other projection
methods may work even if the condition- n = 0 is violated.
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Plot of thex-component of the velocity-u(x, y) of Example 4 at = 10. The results are computed

with a 64 x 64 grid andu = 0.02. The time step size i&t = h.

of the velocity in Fig. 3. One can easily see that the velocity is second-order accurate,
the pressure is nearly second-order accurate in Table V.
We also tested a slightly different example by setting

G=0, f;=0 f,=10 ujsq=0.

The domain and the interface are the same. The initial velocity and the pressure are t:
to be zero on the rectangular domain. Since the force is only along the tangential direct
the pressure is continuous, but the normal derivative of the velocity has a nonconstant i
across the interface. While the exact solution is difficult to find, the motion of the stea
state is nothing but a simple rotation along the interface. In Fig. 4a, we plei¢tbeponent
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FIG. 4. The computed steady state velocity for the modified example in Example 4 with a circular interfa
r = 0.5 with a 64x 64 grid. Other parameters a@= 0, f, =0, f, = 10, andy = 0.02. The time step size is
At = h. (a) Plot of—u(x, y) att = 10 which is not smooth. (b) The plot of the velocity fieldtat 10, the flow
approaches a steady rotation along the interface.
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of the velocity—u(x, y) att = 10 computed using a 64 by 64 grid. We can clearly see th
nonconstant jump in the normal derivative. In Fig. 4b, we plot the velocity field=afl0.
The flow approaches a steady rotation along the circular interface.

4.5. Example 5: A Moving Interface Problem

Now we consider a moving interface problem which has uniform density and viscosi
The initial interface is given by

r@) =rg+esinkd), 0<6 < 2x. (4.38)

The initial velocity and the pressure are all set to be zero. The only driven force of the fl
motion is the surface tension which is proportional to the curvatuteat is,

ful,t) =ex, fo(l,t)=0. (4.39)
The velocity is smooth but the pressure has a honconstant jump

[Pllry=€x, [pn] Irey=0.

In our test, we takeyg = 0.5,k = 5, ¢ = 0.05, andu = 0.1.

We use the level set method [31] to update the interface. We refer the readers to
27, 28] for the details about how to combine the immersed interface method with the le
set method. In the level set method, the interface is the zero level set of a two-dimensi
function

<0, if (x,y)isinthe inside of the interface,
(X, y,t) ¢ =0, if (X,y) ison the interface, (4.40)
>0, if (x,y) isinthe outside of interface.

At each time step, we apply the projection-1IM method described in Section 3 to compi
the velocity. Then the velocity is used to solve the Hamilton—-Jacobian equation

G+l Ve=0 (4.41)

to obtain the new level set functionta= t"*1. Since we use the level set method to updat
the interface, the time step is chosen as

h
At =ming ——, h 4.42
{2||u||oo } (4.42)

to maintain the stability for the level set method and the accuracy for the projection-I|
method.

In Fig. 5, we plotted the computed interface at different times with a 160 by 160 gri
Using the immersed interface method, we know the intersections of the interface
the grid lines. The set of intersections, which is on the interface at a particular time

An animation of the evolution of the interface in this example can be found at http://www4.ncsu.ec
“zhilin/research.html.
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, t=0 ::7.0172, relafive area eror = 0.25% M=128, ¢ = 0.05, ta=100, u=0.1, At = 0.45 h
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FIG. 5. The numerical evolution of the moving interface for Example 5 using the projection-IIM metho
coupled with the level set formulation. The parameters are: 0.1, ¢ = 0.05 M = N = 160, andAt =
min{m, h}. Because of the surface tension, the interface is relaxing to a circle. (a) The computed interfac
t=0,t=70172 t = 210867, and = 35.1563. (b) The initial interfacé = 0 and the computed interface at
t = 100.

one dimensional. Therefore we can afford to store the interface at many different ti
levels. In Fig. 5a, we plotted the interfacetat 0,t = 7.0172t = 21.0867, andt =
35.1563. The relative error in the area is 0.25%t at 7.0172, 0.45% at = 21.0867,
and 0.47% at = 35.1563. In Fig. 5b, we plotted the interface tat 0, andt = 100,
which is almost in the equilibrium state, a circle. The relative area change (Idss) 500

is about 1.61%. Note that, in the equilibrium state, the velocity approaches zero eve
where and the pressure approaches two different constants inside and outside the i
face.

In Table VI, we perform the grid refinement analysis at time 15. Since the exact
solution is not available, we calculate the error between the computed solution and
one obtained by the finest grid, 512 by 512. We denote such errBragor example,
En(p) = || pPn — Psizlleo. FOr a second-order method, the error rafip/ E-y is close to 4
if N is much smaller than 512, the finest number of the grid lines. The ratio approache
asN is getting closer to the finest number of the grid lines; see [22] for the methodolog
From Table VI, we can see that our method behaves like a second-order method and a
with the results of other examples in this section.

TABLE VI
The Grid Refinement Analysis of Projection-1IM Applied to Example 5 att = 15

N IExWle  IEneWIn/IEnWlle  IEx(Pllx  IEn2(Plleo/IEn (Pl
32 18080x 1073 0.2427

64 45062x 10* 4.0123 0.0717 3.3849

128 11920x 10* 3.7804 0.0181 3.9613
256 24400x 10°° 4.8852 42500x 1072 4.2588

Note.The error is computed against the result obtained using the finest grid 512 by 512.
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5. CONCLUSIONS

We have developed an immersed interface method coupled with the projection met
for the full incompressible Navier—Stokes equations that involve a singular force alo
one or several interfaces. We derived some useful interface relations that are used to ¢
mine the correction terms to the original projection method. The new projection-11M meth
has the same stability nature as the original projection method since only the right-h
sides in the projection method are modified. The numerical results show second-order
vergence for the projection-IIM method. The computed solutions remain sharp across
interface since the jump conditions are enforced.

We also propose a new approach of the Immersed Boundary Method when the inter
is represented by a level set function. Instead of using the discrete delta function directly
the level set function with larger widti'h, we use the projections of irregular grid points
on the interface as the control points, and then use the original Immersed Boundary Me
with the width beingw = h.

Research is under way for the Navier—Stokes equations that involves not only a sing
force along one or several interfaces but also discontinuities in the density and the visco
The success of the new method depends on whether we can derive the jump condition
the velocity and the pressure.
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