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Peskin’s Immersed Boundary Method has been widely used for simulating many
fluid mechanics and biology problems. One of the essential components of the method
is the usage of certain discrete delta functions to deal with singular forces along one
or several interfaces in the fluid domain. However, the Immersed Boundary Method
is known to be first-order accurate and usually smears out the solutions. In this paper,
we propose an immersed interface method for the incompressible Navier–Stokes
equations with singular forces along one or several interfaces in the solution domain.
The new method is based on a second-order projection method with modifications
only at grid points near or on the interface. From the derivation of the new method, we
expect fully second-order accuracy for the velocity and nearly second-order accuracy
for the pressure in the maximum norm including those grid points near or on the
interface. This has been confirmed in our numerical experiments. Furthermore, the
computed solutions are sharp across the interface. Nontrivial numerical results are
provided and compared with the Immersed Boundary Method. Meanwhile, a new
version of the Immersed Boundary Method using the level set representation of the
interface is also proposed in this paper.c© 2001 Academic Press

Key Words:Navier–Stokes equations; interface; discontinuous and nonsmooth so-
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1. INTRODUCTION

In this paper, we consider the incompressible Navier–Stokes equations in a bounded
domainÄ ⊂ R2 that contains one or several interfaces0(t):

ρ

(
∂u
∂t
+ (u · ∇)u

)
+∇ p = µ1u+G+ F, x ∈ Ä, (1.1)
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∇ · u = 0, (1.2)

u|∂Ä = ub, BC, (1.3)

u(x, 0) = u0, IC. (1.4)

Here we writeF andG separately to distinguish different irregularities. The singular force
F has support only on the immersed interface0(t) and has the form

F(x, t) =
∫

0(t)
f(s, t)δ2(x− X(s, t)) ds, (1.5)

whereX(s, t) is the arc-length parameterization (s is the arc-length parameter) of the inter-
face, andf (s, t) is the force strength. The above integral is over the entire interface, andδ2

is the two-dimensional Dirac function,δ2(x) = δ(x)δ(y) with x = (x, y). The termG may
have a finite jump across the interface, but is bounded and piecewise continuous in the entire
domain. Throughout this paper, we simply assume that the densityρ ≡ 1 and the viscosity
µ is a constant. Figure 1 is an illustration of the geometry and the local coordinates for the
problems discussed in this paper.

Although we assume that the density and the viscosity are two constants, the model (1.1)–
(1.5) has many applications, for example, cardiac blood flow [32–34], platelet aggregation
and coagulation [9, 10], swimming microorganisms [8], biofilm formation [6], suspension
flows [38], and others; see also [35] for a brief review.

In the 1970–1980s, Peskin [32, 33] developed the Immersed Boundary Method (IB
method) which used the model (1.1)–(1.5) to simulate the blood flow through heart valves.
The valve leaflet (the interface) exerts some force into the blood (the fluid) and moves
along with the fluid simultaneously. Peskin’s IB method has become a standard numerical
method for interface problems that involve singular forces along one or several interfaces.
The method has been applied successfully to many fluid and biological problems.

However, it is also known that generally the IB method is only first-order accurate for
nonsmooth but continuous quantities. Different variations of IB method have been proposed
to improve the accuracy. For example, Lai and Peskin [18] proposed a newformallysecond-
order IB method with reduced numerical viscosity and applied the new method to simulate

FIG. 1. A diagram of the geometry for the interface problems discussed in this paper. We usen andτ to
denote the unit normal and tangential directions of the interface, respectively; andθ is the angle between the
normal direction and thex-axis.
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the flow around a circular cylinder. By formal second-order accuracy, the authors meant
that the scheme would be second-order accurate if the delta function is replaced by a fixed
smooth function, independent of the mesh. The numerical result has a good agreement with
the experimental data; however, thefully second-order accuracy in the maximum norm,
which is the goal of this paper, has not been achieved there. More recently, Cortez and
Minion [5] proposed another high-order scheme using the smoothed blob projection to
compute the force. Their method shows better accuracy inL1 andL2 norms and preserves
the volume better than the original IB method. Nevertheless, both approaches described in
[5] and [18] use the discrete delta function which usually smears out the solution across the
interface.

In contrast to the discrete delta function approach, the immersed interface method (IIM)
[20–23, 25], which incorporates the jump conditions into the finite difference scheme,
was developed to improve the accuracy of the IB method and to obtain sharp interface
solutions. The IIM method has been shown to be second-order accurate in the maximum
norm for elliptic problems [26] and has been applied to Stokes flow [21] and other moving
interface/free boundary problems [14, 27, 28]. In this paper, we extend the IIM method to
the full Navier–Stokes equations (1.1)–(1.5) and compare the new method with different
versions of the IB method.

The Ghost Fluid Method (GFM), which is also a sharp interface method that uses the
jump conditions in the solution and the flux, has been developed by Fedkiw, Liu, Kang
and their group for elliptic interface problems [29]. The GFM is simpler than IIM and
the resulting linear system of equations for the self-adjoint elliptic equations is symmetric
positive definite. The trade-off is that the solution is first-order accurate in the maximum
norm. The method has been applied to multiphase incompressible flow [16] and two phase
incompressible flames simulations [30].

Another sharp interface method in which the jump conditions in thecoefficientswas
taken into account in constructing the algorithm was developed in [11] and [12] for the
incompressible Navier–Stokes equations.

The method developed in this paper is forsharp interface models. Besides the differ-
ences in the methodology, our method distinguishes from [16, 29, 30] in accuracy, and
distinguishes from [11, 12] in dealing with different problems. There are some other mod-
els and methods for interface problems, notably, thephase field modeland the finite volume
method, for example, [36]. Each model has advantages and disadvantages, and may have
specific applications. It is easy to compute surface tension and curvature with sharp interface
models. It is also an advantage to use the level set method with sharp interface models.

The rest of the paper is organized as follows. In Section 2, we introduce the jump condi-
tions for (1.1)–(1.5). In Section 3, we present the IIM scheme for (1.1)–(1.5) which modifies
a projection method by adding some correction terms. In Section 4, numerical results for
nontrivial examples including one with a moving interface are presented and analyzed. A
new version of the IB method with the level set formulation is also proposed there. Some
conclusions will be given in Section 5.

2. JUMP CONDITIONS ACROSS THE INTERFACE

Because of the singular forces, the velocity of the solution to (1.1)–(1.5) is typically non-
smooth, and the pressure may be discontinuous, across the interface. The jump conditions
of the velocity and the pressure are quantitatively described in the following theorem.
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THEOREM1. Let (X, Y) be a point on the interface. Let0 be a smooth closed interface
within the domain. Let the unit outward normal direction ben = (cosθ, sinθ), whereθ is
the angle between the outward normal direction and the x-axis. Then we have the jump
conditions

[u] = 0, [µun] = − f̂2τ, (2.6)

[ p] = f̂1, [ pn] = ∂ f̂2

∂s
+ [G] · n, (2.7)

whereτ = (−sinθ, cosθ) is the unit tangent direction, and f̂1 and f̂2 are the force strengths
in the normal and tangential directions, respectively

f̂1(s, t) = f1(s, t) cosθ + f2(s, t) sinθ,
(2.8)

f̂2(s, t) = − f1(s, t) sinθ + f2(s, t) cosθ.

The jump[·] is defined as the difference of the limiting value from outside of the interface
and that from the inside, and s is the arc-length parameter of the interface.

The proof can be found in [19, 21] with minor modifications.

2.1. Additional Interface Relations

In this subsection, we derive some additional interface relations by differentiating the
known jump conditions in Theorem 1 along the interface, and by making use of the mo-
mentum equation (1.1). These interface relations are summarized in Theorem 2 and will
be used in our new numerical scheme. For interface problems, most physical quantities
along/across the interface are associated with the normal and tangential directions. Thus,
we introduce a local coordinate system which lies along those directions, and derive more
interface relations in the local coordinate system.

THEOREM2. Under the same notations and assumptions as in Theorem 1, we define the
local coordinates at(X, Y), a point on the interface, as

ξ = (x − X) cosθ + (y− Y) sinθ,
(2.9)

η = −(x − X) sinθ + (y− Y) cosθ.

Then the interface0 can be represented byξ = χ(η) in the neighborhood of(ξ, η) = (0, 0),
which satisfiesχ(0) = 0, χ ′(0) = 0, andχ ′′(0) = κ, the curvature of the interface at(0, 0).
The following interface relations are true at(X, Y):

[ p] = f̂1, [ pξ ] = ∂ f̂2

∂η
,

[u] = 0, [µuξ ] = − f̂2τ, [uη] = 0,
(2.10)

[µuηη] = κ f̂2τ, [µuξη] = −∂ f̂2

∂η
τ − κ f̂2n,

[µuξξ ] = −[µuηη] + [ pξ ] n+ [ pη] τ + [uξ ] u · n− [G].
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The proof of the theorem is quite technical, long, and tedious. However, it is straightfor-
ward if we know the key ideas. Therefore, we will provide only the outline of the proof.

Sketch of the proof.The first four equalities are directly copied from the jump conditions
in Theorem 1. Let the interface0 be ξ = χ(η) in the neighborhood of(ξ, η) = (0, 0).
Then we know thatχ(0) = 0,χ ′(0) = 0, andχ ′′(0) = κ. Differentiating [u] = 0 along the
interface and usingχ ′(0) = 0, we get the fifth equality. By differentiating [u] = 0 along
the interface twice and usingχ ′(0) = 0, andχ ′′(0) = κ, we get the sixth equality. By
differentiating the fourth equality along the interface and using∂τ

∂η
= κn, we get the seventh

equality.1 Finally, by expressing the momentum equation (1.1) in the local coordinate (2.9),
we get the last equality.

2.2. Projection of the Jump Relations on x- and y-Direction

In order to be numerically useful, those interface relations in (2.10) in the local coordi-
nate (2.9) are transformed into the jump relations in the Cartesian coordinates. Sinceµ is
continuous, we have

[ux] = [uξ ] cosθ − [uη] sinθ,

[uy] = [uξ ] sinθ + [uη] cosθ,
(2.11)

[uxx] = [uξξ ] cos2 θ − 2[uξη] cosθ sinθ + [uηη] sin2 θ,

[uyy] = [uξξ ] sin2 θ + 2[uξη] cosθ sinθ + [uηη] cos2 θ.

Using these identities and the interface relations in (2.10), we can easily write down [u],
[ux], [uy], [uxx], [uyy], [ p], [ px], and [py] at any point on the interface in terms of the force
strength and its derivatives, and the geometric information of the interface.

3. THE NUMERICAL ALGORITHM

Our numerical method is based on the projection method for solving the incompressible
Navier–Stokes equations with careful treatment at grid points that are near or on the interface.
There are several versions of the projection method for solving the incompressible Navier–
Stokes equations; see for example, [1, 15, 17] and many others. The projection method that
we used in this paper is the one described in [2] which is based on the pressure increment
formulation of [1, 15] with an additional accurate pressure correction (in [2]; the method
is denoted by Pm II). Our key modification to the projection method (Pm II) is to add
some correction terms at grid points near or on the interface. Those correction terms are
determined from the interface relations that we stated in the previous sections.

For simplicity, we assume that the domainÄ is a rectangle [a, b] × [c, d], and the spatial
spacing ish = (b− a)/M = (d − c)/N, whereM andN are the number of grid points in
the x andy directions, respectively. Here, a standard uniform Cartesian grid is used. Our
method from timetn to tn+1 can be written as

u∗ − un

1t
+ (u · ∇hu)n+ 1

2 = ∇h pn− 1
2 + µ

2
(1hu∗ +1hun)+Gn+ 1

2 + Cn
1,

(3.12)
u∗|∂Ä = un+1

b ,

1 In our notation, a circle has negative curvature.
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where(u · ∇hu)n+ 1
2 is approximated using

(u · ∇hu)n+ 1
2 = 3

2
(un · ∇h)un − 1

2
(un−1 · ∇h)un−1+ Cn

2. (3.13)

The projection step is the following:

1hφ
n+1 = ∇h · u∗

1t
+ Cn

3 ,
∂φn+1

∂n

∣∣∣∣
∂Ä

= 0, (3.14)

un+1 = u∗ −1t∇hφ
n+1+ Cn

4. (3.15)

∇h pn+ 1
2 = ∇h pn− 1

2 +∇hφ
n+1+ Cn

5. (3.16)

In the expressions above,∇h and1h are the standard central difference operators regardless
of the interface, thus,

1hui j =
(

ui+1, j − ui−1, j

2h
,

ui, j+1− ui, j−1

2h

)
,

1hui j = ui−1, j + ui, j−1+ ui+1, j + ui, j+1− 4ui j

h2
.

It is clear that the modifications that we made to the projection method are those correction
termsCn

k at grid points near or on the interface.

3.1. Determining the Correction Terms

At a regular grid point (xi , yj ), meaning that all the grid points in the standard centered
five-point stencil are from the same side of the interface, we use the standard central
difference scheme to discretize Eqs. (1.1)–(1.4) without any correction; that isCn

k ≡ 0.
At an irregular grid point (xi , yj ), we need to determine the correction terms so that the
finite difference scheme can be as accurate as possible. We assume that the interface cuts a
grid line between two grid points no more than once. This is guaranteed if the interface is
expressed in terms of a level set function.

First, we establish the following lemma, which is the basis for determining the correction
terms.

LEMMA 1. Let u(x) be a piecewise twice differentiable function. Assume that u(x) and
its derivatives have finite jumps[u], [ux], and[uxx], at x∗ = x + αh,−1≤ α ≤ 1, then the
following relations hold,

u(x + h)− u(x − h)

2h
=


u′(x)+ C(x, α)

2h
+ O(h2), if 0≤ α ≤ 1,

u′(x)− C(x, α)

2h
+ O(h2), if −1≤ α < 0,

(3.17)

u(x + h)− 2u(x)+ u(x − h)

h2
= u′′(x)+ C(x, α)

h2
+ O(h), (3.18)

where

C(x, α) = [u] + [ux](1− |α|)h+ [uxx]
(1− |α|)2h2

2
, (3.19)
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and the jumps are defined as

[u] =
{

limx→x∗+ u(x)− limx→x∗− u(x), if 0≤ α ≤ 1,

limx→x∗− u(x)− limx→x∗+ u(x), if −1≤ α < 0.
(3.20)

[ux] =
{

limx→x∗+ ux(x)− limx→x∗− ux(x), if 0≤ α ≤ 1,

limx→x∗− ux(x)− limx→x∗+ ux(x), if −1≤ α < 0.
(3.21)

[uxx] =
{

limx→x∗+ uxx(x)− limx→x∗− uxx(x), if 0≤ α ≤ 1,

limx→x∗− uxx(x)− limx→x∗+ uxx(x), if −1≤ α < 0.
(3.22)

Proof. Without loss of generality, we assume that 0< α ≤ 1. Therefore,x − h andx
are on the same side whilex + h is on the other side. We use the Taylor expansion twice
for u(x + h) at x∗, then atx, as follows,

u(x + h) = u(x∗ + (1− α)h) = u(x∗+)+ ux(x
∗+)(1− α)h

+ uxx(x
∗+)

(1− α)2h2

2
+ O(h3)

= u(x∗−)+ ux(x
∗−)(1− α)h+ uxx(x

∗−)
(1− α)2h2

2
+ C(x, α)+ O(h3)

= u(x)+ ux(x)(x∗ − x)+ uxx(x)
(x∗ − x)2

2
+ ux(x)(1− α)h

+ uxx(x)(x∗ − x)(1− α)h+ uxx(x)
(1− α)2h2

2
+ C(x, α)+ O(h3).

The Taylor expansion foru(x − h) is

u(x − h) = u(x)− hux(x)+ uxx(x)
h2

2
+ O(h3).

After substituting these two expansions into the left-hand sides of (3.17) and (3.18) and
with some manipulations, we get the desired equalities.

Remark 1. The lemma above is the basis of our numerical algorithm for determining
the correction terms.

• The correction terms given in the lemma can be found in the literature. For example,
(3.18) is a special case in the expressions (2.22) and (2.24) in [22]. It was also derived
independently in [29] for the ghost fluid method. Equation (3.17) is a special case in the
expressions (26) and (39) in [24]. Nevertheless, in the lemma we have “uniform” formulae
for both first- and second-order derivatives; see below for the explanation.
• Lemma 1 tells us that the correction term is simply the product of the finite difference

coefficient, corresponding to the grid point from different sides of the interface in reference
to the master grid point, andC(x, α) which corresponds to the singular source term. For
example, if−1 < α < 0, in Lemma 1, which meansx − h and x are on different sides
of the interface, then the correction terms forux is the product of the coefficient−1/(2h)

andC(x, α). Therefore, it is very easy to modify the finite difference scheme to maintain a
certain order of accuracy.
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• If there are two interfaces between(x − h, x + h), say,x∗1 = x + α1h andx∗2 = x +
α2h, with α1 < 0 andα2 ≥ 0, then we just need to add another correction term, for example,

u(x + h)− 2u(x)+ u(x − h)

h2
= u′′(x)+ C(x, α1)

h2
+ C(x, α2)

h2
+ O(h),

u(x + h)− u(x − h)

2h
= u′(x)+ C(x, α1)

2h
− C(x, α2)

2h
+ O(h2).

3.2. Correction Terms to the Projection Method

In our numerical scheme (3.12)–(3.16), there are several correction terms to be deter-
mined. For the sake of simplicity, we will only explain how to evaluate some of the correction
terms of thex-component ofCn

1. The other correction terms can be treated in the same way
so we omit the details here. Assume thatx∗, xi ≤ x∗ ≤ xi+1, is an intersection of the in-
terface and thex-axis. The contribution toCn

1 in the x-direction from this interface point
includes the following:

• the correction term forunDx,hun from the nonlinear term(un · ∇h)un:

− 3

4h

([
un

x

]
(xi+1− x∗)+ [un

xx

] (xi+1− x∗)2

2

)
un(x∗, yj );

• the correction term forun−1Dx,hun−1 from the nonlinear term(un−1 · ∇h)un−1:

1

4h

([
un−1

x

]
(xi+1− x∗)+ [un−1

xx

] (xi+1− x∗)2

2

)
un−1(x∗, yj );

• the correction term forDx,h pn− 1
2 from∇h pn− 1

2 :

− 1

2h

([
pn− 1

2
]+ [p

n− 1
2

x

]
(xi+1− x∗)

)
;

• the correction term forµ(u∗i−1, j − 2u∗i, j + u∗i+1, j )/(2h2) from µ1hu∗/2:

− µ

2h2

([
un+1

x

]
(xi+1− x∗)+ [un+1

xx

] (xi+1− x∗)2

2

)
;

• the correction term forµ(un
i−1, j − 2un

i, j + un
i+1, j )/(2h2) from µ1hun/2:

− µ

2h2

([
un

x

]
(xi+1− x∗)+ [un

xx

] (xi+1− x∗)2

2

)
.

We use thebilinear interpolationto approximate the values ofu andv at (x∗, yj ) from the
values ofu andv at the neighboring four grid points. Such approximation is at least first-
order accurate since the velocity is continuous. Note that we have used the jump conditions
at tn+1 to approximate the jump conditions att∗ corresponding to the same treatment for
the velocity boundary condition in the projection method.
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Similarly, if the interface cuts through betweenxi−1 andxi , we need to add the corre-
sponding correction terms as well. In this way, we take care of the correction terms in the
x-direction forCn

1.
The spatial local truncation error of our scheme isO(h2) at regular grid points, butO(h)

at irregular grid points. However, since the number of irregular grid points usually is one
dimensional lower than the total number of grid points, we expect the global accuracy is
still second order for the velocity, and nearly second order for the pressure. A proof of
second-order convergence for an elliptic interface problem can be found in [26]; see also
the numerical experiments in Section 4.

It is worth pointing out that the modifications that we made to the projection method only
affect the right-hand sides of the original projection method. Therefore, our method does
not change the stability nature of the original projection method, which is stable if the CFL
condition is satisfied.

Once we have computed those correction terms, we need to solve two Helmholtz equations
to getu∗ in (3.12) and one Poisson equation to getφn+1 in (3.14). The discrete systems
for the Helmholtz and Poisson equation are symmetric and positive definite, and are solved
using the fast solverHWSCRTfrom Fishpack.

3.3. Further Correction Near the Boundary and the Interface

Using the projection method with the correction terms added at irregular grid points, we
have observed that the velocity is second-order accurate but the pressure is only first order.
The largest error in the pressure appears near the boundary or the interface. As analyzed in
[2, 7, 37, 39], this is due to the inherent numerical boundary layer in the projection method.
In [2], see also [17], a correction scheme is proposed which is

pn+ 1
2 = pn− 1

2 + φn+1− µ

2
(∇h · u∗ + Cn

6), (3.23)

whereφn+1, in our notation, is the solution of the Poisson equation of (3.14)–(3.15) from
tn to tn+1, Cn

6 again is a correction term only needed at irregular grid points near or on
the interface. This correction does dramatically improve the accuracy for the pressure (see
Section 4).

In our implementation, we use the centered difference scheme to compute the correction
term∇h · u∗ in interior grid points. Then we use an extrapolation scheme to extend the
quantity to the boundary of the rectangle, for example, at the boundaryx = a,

∇h · u∗(0, j ) = 3∇h · u∗(1, j )− 3∇h · u∗(2, j )+∇h · u∗(3, j ). (3.24)

Near the interface, even though the velocity is second-order accurate, the term∇h · u∗/1t
may have only zeroth order accuracy since the error may not be smooth near the interface,
and1t ∼ h. This will reduce the accuracy of pressure to first order. Our remedy to this
problem is to replace∇h · u∗/1t at an irregular grid point by the same quantity at the nearest
regular grid point. This again improves the accuracy of the pressure. The same technique
was also used independently in [4] where a second-order accurate symmetric sharp interface
method for the Poisson equation with Dirichlet boundary conditions was proposed.

We will call the numerical method described in this section as the projection-IIM method.
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4. NUMERICAL EXAMPLES

In this section, we present some numerical experiments for solving the velocity and
presure in (1.1)–(1.4) at some fixed timet . The velocity, and the presure up to a constant,
are uniquely determined by the initial conditionsu(x, 0), p(x, 0), and0(s, 0); the initial
interface; the boundary conditionu(x, t)|∂Ä; and the force strength( f̂1, f̂2) in the normal
and tangential directions along the interface.

All the calculations in this section were perfomed at North Carolina State University
using Sun workstations. Most simulations are done within minutes to a couple of hours
depending on the number of grid points. Unless specified differently, we use a level set
function to represent the interface; see (4.40).

4.1. Example 1: A Noninterface Problem

We start our numerical tests by checking the accuracy of the projection method for a
regular problem, and use the result as the basis for comparing different algorithms for the
interface examples. The following exact solution is taken from [40]:

u(x, y, t) = −sin2(πx) sin(2πy) cost,
(4.25)

v(x, y, t) = sin2(πy) sin(2πx) cost.

Define a functionψ by

ψ =
[
(x − x2) sin(πx)(y− y2) sin(πy)− 16

π6

]
cost. (4.26)

The pressure then is

p(x, y, t) = −∂ψ

∂t
+ ν1ψ. (4.27)

The force termG is determined from the exact solution. The domain is the unit square
Ä = [0, 1]× [0, 1]. In this example, we have∂p

∂n 6= 0 on the boundary. Thus, the numerical
boundary layer might deteriorate the accuracy of the pressure.

Table I shows the grid refinement analysis att = 10. Throughout this paper, the error
computed in the maximum norm is up to the boundary, meaning that the error at the boundary
is also taken into account. The order of accuracy is defined as

order= log[E(N)/E(2N)]

log 2
. (4.28)

The pressure has been adjusted by some constant that minimizes the error in the maximum
norm. We can see the velocity is second-order accurate, but the pressure is first order using
the original projection method. However, if we add the correction term in (3.23), then the
pressure is very close to second-order. The last column in Table I is the errors of the pressure
with the correction term in (3.23). While it is not fully second-order accurate, it is better
than the original projection method without the correction. Away from the boundary, the
pressure is second-order accurate.



832 LI AND LAI

TABLE I

The Grid Refinement Analysis of the Projection Method withµ = 1, ∆t = h,

for Example 1 at t = 10

Projection method without (3.23) With (3.23)

N ‖E1(u)‖∞ Order ‖E1(p)‖∞ Order ‖E2(p)‖∞ Order

32 2.7021× 10−4 0.0608 3.2871× 10−2

64 8.3429× 10−5 1.6955 0.0269 1.1785 9.2432× 10−3 1.8303
128 2.2471× 10−5 1.8925 0.0109 1.2975 3.2825× 10−3 1.4936
256 5.7841× 10−6 1.9580 0.0045 1.2665 1.1341× 10−4 1.5333

Note.The second column‖E1(u)‖∞, and the fourth column‖E1(p)‖∞ are the errors of the velocity
and pressure using the projection method without correction in (3.23), respectively. While the velocity is
nearly second order accurate, the pressure is roughly first order. The sixth column‖E2(p)‖∞ is the error
for the pressure using the projection method with correction in (3.23). While it is not entirely second order,
the accuracy of the pressure has been improved. The velocity (not listed) remains second-order accurate
with smaller errors.

In practice, it is difficult to get fully second-order accurate results for pressure for some
problems using projection methods with a single Cartesian grid. It may be due to the
difficulty in dealing with the numerical boundary layer and the four corners of the rectangular
domain. We did notice that, however, the full second-order accuracy was achieved for
pressure in [2] for the channel flow and a problem with homogeneous boundary conditions.
We think it may be possible to achieve full second-order accuracy for pressure if a suitable
extrapolation scheme is used to evaluate the correction term at the boundary, particularly, at
the four corner points. Usually, it is more accurate to use the MAC grid than to use a single
Cartesian grid. So we believe that it is possible to achieve full second-order accuracy using
the MAC grid. The trade-off is the increased complexity in the implementation.

4.2. Example 2: An Interface Problem with a Constant Jump in the Pressure

In this example, we consider a fixed interface,

(x − 0.5)2

a2
+ (y− 0.5)2

b2
= 1, (4.29)

in the domain [0, 1]× [0, 1]. The normal and tangential force strength aref̂1 = 10 and
f̂2 = 0, respectively. We also setG1 = 0 andG2 = 0. The solution now is given by

u = 0, v = 0, p =
C, if (x− 0.5)2

a2 + (y− 0.5)2

b2 − 1 > 0,

−10+ C, if (x− 0.5)2

a2 + (y− 0.5)2

b2 − 1≤ 0,

(4.30)

whereC is an arbitrary constant. Here, we compare our method with Peskin’s IB method
using the discrete cosine delta function. Depending on how the interface is represented,
there are two different versions of the IB method.

4.2.1. The Lagrangian particle approach.In this traditional approach, the interface
is represented by a set of Lagrangian pointsXk, k = 1, 2, . . . , Nb, whereNb is the total
number of the particle points and is usually chosen in such a way that

max1sk = max‖Xk+1− Xk‖ ∼ h.
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The forces defined on those particle points are then distributed to the nearby grid points
(x, y) by the formula

Nb∑
k=1

f(sk)δw(x − Xk)δw(y− Yk)1sk,

whereδw is the one-dimensional discrete delta function

δw(x) =
{

1
4w

(1+ cos(πx/2w)), if |x| < 2w,

0, if |x| ≥ 2w.
(4.31)

Although there are other discrete delta functions in the literature, the computational results
are not much different for two- and three-dimensional problems. The most common choices
of w is h, the spatial mesh size. As we can see, whenw gets larger, the cost to spread the
singular force to the grid points increases significantly. Our numerical tests for this and other
examples show that the accuracy of the computed velocity remains pretty much the same
for different choices ofw. However, the pressure, if it is discontinuous, smears out more
widely asw increases. Therefore, the best choice ofw is h. The sixth column in Table II is
the grid refinement analysis for the velocity which is clearly first-order accurate.

4.2.2. The level set representation.If the interface is represented by the zero level set
of a two-dimensional functionϕ(x, y) as in (4.40), it is not straightforward to use the IB
method directly. However, if the tangential component of the singular force is zero, then
we can write

∫
0(t)

f(s)δ2(x− X(s)) ds= f · nδ(ϕ)∇ϕ; (4.32)

see [3] and others. It is easy to apply the discrete delta function in the above form.

TABLE II

The Grid Refinement Analysis and Comparison of the Three Projection-IB Methods

for Example 2 with µ = 0.1, a = 0.35,b = 0.25, and∆t = h

Level Set IB widthw = h Level Set IB widthw = √h Lagrangian IB widthw = h

N ‖E(u)‖∞ Order ‖E(u)‖∞ Order ‖E(u)‖∞ Order

32 1.2434× 10−1 4.9254× 10−3 5.1204× 10−2

64 6.3619× 10−2 0.96673 2.9594× 10−3 0.7349 2.5839× 10−2 0.9867
128 4.0730× 10−2 0.64339 1.1062× 10−3 1.4197 1.2968× 10−2 0.9929
256 4.3059× 10−2 0.09459 4.1558× 10−4 1.4124 6.5055× 10−3 0.9952

Note.The initial data is taken from the solution in Example 1. The second and fourth columns are the error
of the computed velocity using the level set function with widthw beingh and

√
h, respectively. The sixth

column is the error of the computed velocity using the original IB method withw beingh. Generally, the
velocity is first-order accurate. The pressure which is not listed in the table has zeroth order accuracy because
it is smeared out.
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Unfortunately, the choice of the width of the discrete delta function is crucial for the IB
method. Ifw = h, the IB method barely converges; see the second column of Table II. T.
Hou [13] may be the first one to note this and suggest that the best choice of the width is
w = √h. This has also been confirmed in our numerical tests; see the fourth column of
Table II. However,w = √h is much larger thanh if h is small. The IB method smears out
the pressure and shows zero-order convergence for the pressure. Since the width has to be
taken asw = √h, we cannot guarantee the right pressure even at those grid points that are
away from the interface.

A remedy to the problem is to use the projections of irregular grid points of a particular
side, sayϕ(x, y) ≤ 0, on the interface as the control points. Then the Peskin’s original IB
method can be applied with those control points. In [14, 28], we described in detail how
to find the projection of an irregular grid point on the interface. Using this new approach,
we still can use a thin layer(w = h) of the interface in the IB method, so that the solution
will only be smeared out in the thin layer while we can keep the advantages of the level set
method.

4.2.3. The grid refinement analysis and comparison.Table II lists the comparison of
three different versions of the IB method using the particle approach and the level set func-
tion. We have also tested the example with different but modestµ, different major axisa
and minor axisb, and different initial conditions. All the results are qualitatively similar.
In Table III, we show the grid refinement analysis of the projection-IIM method devel-
oped in this paper. Without the modification of the pressure equation (3.23), the velocity
in the second column is second-order accurate, while the pressure in the fourth column
is first-order accurate with the largest errors occurring near the boundary or the interface.
With the correction term in (3.23) added, we see second-order accuracy for both the ve-
locity and the pressure. Since the pressure is piecewise constant in this case, the accuracy
for the pressure is much better than second order. However, this is not true for general
problems.

In a further numerical experiment, we revisit Example 1 but add a singular force termf̂1 =
10 to the Navier–Stokes equations in (1.1). The exact solution for the velocity is the same

TABLE III

The Grid Refinement Analysis of Projection-IIM Method for Example 2. The

Parameters areµ = 0.1, a = 0.35, b = 0.25, and∆t = h

Projection IIM without (3.23) Projection IIM with (3.23)

N ‖E(u)‖∞ Order ‖E(p)‖∞ Order ‖E(p)‖∞ Order

32 1.6412× 10−4 1.5785× 10−2 9.9058× 10−3

64 3.9857× 10−5 2.0418 7.9281× 10−3 0.9935 1.1533× 10−3 3.1026
128 9.8987× 10−6 2.0095 3.9676× 10−3 0.9987 1.5946× 10−4 2.8544
256 1.2367× 10−6 2.0008 1.9842× 10−3 0.9997 2.4832× 10−5 2.6830

Note.The first and third columns are the errors of the computed velocity and the pressure without
the correction term in (3.23), respectively. We can clearly see that the velocity is second-order accurate
while the pressure is first-order because of the boundary layer. The sixth column is the error of the
computed pressure using the same method but with the correction term for the pressure in (3.23).
The accuracy actually is better than second-order because of the fact that the pressure is piecewise
constant. The computed velocity (not shown in this table) with the correction is also more accurate
meaning a smaller error constant.
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FIG. 2. Computed pressure for Example 1 with an added force termf̂1 = 10 using a 64 by 64 grid. (a) The
result computed using the projection-IIM method which catches the jump in the pressure. (b) The result computed
using the IB method with the interface represented by a level set function(w = √h). The width of the discrete delta
function isw = √h. (c) The result computed using the original IB method(w = h). The error for the pressure is
O(1) for both (b) and (c).

as in Example 1, but the pressure is the sum of the pressure in Example 1 and the piecewise
constant in (4.30). The analysis and observations are similar to the discussions above.
Figure 2a shows the pressure computed using the projection-IIM method. The computed
pressure has the right jump up to second order. Figures 2b and 2c show the pressure computed
using the IB method with the level set representation of the interface(w = √h) and the
original IB method with particle representation of the interface(w = h), respectively. In
Fig. 2b, we see that the pressure is smeared out by the widthw = √h while in Fig. 2c, we
see larger errors but a thinner layer(w = h) near the interface.

For this test problem, our projection-IIM method is faster compared with the IB method.
The reason, we believe, is the triple loop of the IB method to spread the forces to nearby
grid points.

4.3. Example 3: An Interface Problem with Nonconstant Jump in the Pressure

In this example, we want to check how well our method can handle a nonconstant jump
in the pressure and a finite jump inG. The interface0 and the domainÄ are the same as in
Example 2.
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The source termG is the gradient of a functionq(x, y), which is the solution of the
following

1q = 0, (x, y) ∈ Ä,
∂q

∂n

∣∣∣∣
∂Ä

= 0, (4.33)

[q]|0 = x + y,

[
∂q

∂n

]∣∣∣∣
0

= 0. (x, y) ∈ 0. (4.34)

The functionq(x, y) andG = ∇q are computed using the IIM method [25] with a 512 by
512 fine grid. Note that from [∂q

∂n ] = 0 and [q] = x + y, it is easy to derive

[G1] = [qx] = sin2 θ − sinθ cosθ, [G2] = [qy] = cos2 θ − sinθ cosθ,

wheren = (cosθ, sinθ) is the unit normal direction of0 pointing outward.
The full Navier–Stokes equations of Example 3 are (1.1)–(1.5) with the following

parameters

u|∂Ä = 0, µ = 1, G = ∇q(x, y),

f̂2 = 0, f̂1 = x + y, (x, y) ∈ 0,

with initial conditions foru and p.
For this example, we do not know the exact solutions. However, the steady state solution

for this example is

lim
t→∞u(x, t) = 0, lim

t→∞ p(x, t) = q(x).

In Table IV, we show the grid refinement analysis for thesteady state solutionobtained using
the projection-IIM method att = 10. The initial velocity is taken from (4.25) in Example 1,
while the pressure is

p0(x, y) = cosπx cosπy+ q(x, y).

In this way, we guarantee the initial pressure has the right jump, [p] = f̂1. We see that the
projection-IIM method gives a second-order accurate solution for both the velocity and the
pressure. The results are qualitatively the same if different initial conditions are used, as

TABLE IV

The Grid Refinement Analysis of Projection-IIM Applied to Example 3

with µ = 1, ∆t = h, at t = 10

N ‖EI I M (u)‖∞ Order ‖EI I M (p)‖∞ Order

32 2.4930× 10−5 5.1614× 10−4

64 3.5197× 10−6 2.8244 8.4365× 10−5 2.6131
128 4.6660× 10−7 2.9152 1.6308× 10−5 2.3710
256 3.5073× 10−8 2.9332 5.7023× 10−6 1.5160

Note.The initial velocity is taken from (4.25) in Example 1. The initial pressure is taken
as cosπx cosπy+ q(x, y).
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TABLE V

The Grid Refinement Analysis of Projection-IIM Applied to Example 4

with µ = 0.02, ∆t = h, at t = 10; Second-Order Convergence Is Achieved

N ‖EIIM (u)‖∞ Order ‖EIIM (p)‖∞ Order

32 2.4215× 10−3 1.1513× 10−2

64 5.3547× 10−4 2.1771 3.2255× 10−3 1.8357
128 1.4970× 10−4 1.8388 9.1307× 10−4 1.8357
256 3.6173× 10−5 2.0491 1.9727× 10−4 2.2106

long as the jump condition inp is initially satisfied. Note that cosπx cosπy satisfies the
homogeneous Neumann boundary condition∇ p · n = 0 on the boundary. If we take the
initial pressure from (4.27) in Example 1, then the computed pressure is only first-order
accurate since [p] 6= f̂1 initially while the velocity is still second-order accurate.

4.4. Example 4: Circular Flow with a Line Force

Now we consider an example with nonsmooth velocity. The exact solution is

u(x, y, t) =
{

h(t)
( y

r − 2y
)

if r > 1
2,

0 r ≤ 1
2,

(4.35)

v(x, y, t) =
{

h(t)
(− x

r + 2x
)

if r > 1
2,

0 r ≤ 1
2,

(4.36)

p(x, y, t) = 0, (4.37)

wherer =
√

x2+ y2. The interface is the circler = 1
2 and the solution domain is [−1, 1]×

[−1, 1]. It is easy to verify that the velocity satisfies the incompressibility constraint, and it
is continuous but has a finite jump in the normal direction

[un] = [ur ] = −2h(t) sinθ, [vn] = [vr ] = 2h(t) cosθ,

across the interface. Thus, the normal and tangential force strength are

f̂1 = 0, f̂2 = −2h(t).

Note that,ut · n is not zero on the boundary ifdh
dt 6= 0, which may affect the performance of

the projection method.2 Outside of the interfacer = 0.5, the nonzero and bounded source
termG is derived directly from the exact solution using Maple. There is also a finite jump
in G.

With h(t) = 1, our method converges to the steady state solution. The grid refinement
analysis reveals similar results as in Example 3. In our time-dependent test, we takeh(t) =
1− e−t . We present the numerical results att = 10 in Table V and plot thex-component

2 It seems that the projection method used here requiresut · n to be zero along the boundary. Numerical tests
showed that ifut · n is not zero, then the velocity still converges but not with second-order accuracy; the pressure
may not converge at all for the projection method ifut is large on the boundary. However, some other projection
methods may work even if the conditionut · n = 0 is violated.
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FIG. 3. Plot of thex-component of the velocity−u(x, y) of Example 4 att = 10. The results are computed
with a 64× 64 grid andµ = 0.02. The time step size is1t = h.

of the velocity in Fig. 3. One can easily see that the velocity is second-order accurate, and
the pressure is nearly second-order accurate in Table V.

We also tested a slightly different example by setting

G = 0, f̂1 = 0, f̂2 = 10 u|∂Ä = 0.

The domain and the interface are the same. The initial velocity and the pressure are taken
to be zero on the rectangular domain. Since the force is only along the tangential direction,
the pressure is continuous, but the normal derivative of the velocity has a nonconstant jump
across the interface. While the exact solution is difficult to find, the motion of the steady
state is nothing but a simple rotation along the interface. In Fig. 4a, we plot thex-component

FIG. 4. The computed steady state velocity for the modified example in Example 4 with a circular interface
r = 0.5 with a 64× 64 grid. Other parameters areG = 0, f̂1 = 0, f̂2 = 10, andµ = 0.02. The time step size is
1t = h. (a) Plot of−u(x, y) at t = 10 which is not smooth. (b) The plot of the velocity field att = 10, the flow
approaches a steady rotation along the interface.
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of the velocity−u(x, y) at t = 10 computed using a 64 by 64 grid. We can clearly see the
nonconstant jump in the normal derivative. In Fig. 4b, we plot the velocity field att = 10.
The flow approaches a steady rotation along the circular interface.

4.5. Example 5: A Moving Interface Problem

Now we consider a moving interface problem which has uniform density and viscosity.
The initial interface is given by

r (θ) = r0+ ε sin(kθ), 0≤ θ ≤ 2π. (4.38)

The initial velocity and the pressure are all set to be zero. The only driven force of the fluid
motion is the surface tension which is proportional to the curvatureκ, that is,

f̂1(0, t) = εκ, f̂2(0, t) = 0. (4.39)

The velocity is smooth but the pressure has a nonconstant jump

[ p]|0(t)= εκ, [ pn] |0(t)= 0.

In our test, we taker0 = 0.5, k = 5, ε = 0.05, andµ = 0.1.
We use the level set method [31] to update the interface. We refer the readers to [14,

27, 28] for the details about how to combine the immersed interface method with the level
set method. In the level set method, the interface is the zero level set of a two-dimensional
function

ϕ(x, y, t)


<0, if (x, y) is in the inside of the interface,
=0, if (x, y) is on the interface,
>0, if (x, y) is in the outside of interface.

(4.40)

At each time step, we apply the projection-IIM method described in Section 3 to compute
the velocity. Then the velocity is used to solve the Hamilton–Jacobian equation

ϕt + Eu·
·∇ ϕ = 0 (4.41)

to obtain the new level set function att = tn+1. Since we use the level set method to update
the interface, the time step is chosen as

1t = min

{
h

2‖u‖∞ , h

}
(4.42)

to maintain the stability for the level set method and the accuracy for the projection-IIM
method.

In Fig. 5, we plotted the computed interface at different times with a 160 by 160 grid.
Using the immersed interface method, we know the intersections of the interface and
the grid lines. The set of intersections, which is on the interface at a particular time, is

An animation of the evolution of the interface in this example can be found at http://www4.ncsu.edu/
˜zhilin/research.html.
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FIG. 5. The numerical evolution of the moving interface for Example 5 using the projection-IIM method
coupled with the level set formulation. The parameters are:µ = 0.1, ε = 0.05, M = N = 160, and1t =
min{ h

2‖u‖∞ , h}. Because of the surface tension, the interface is relaxing to a circle. (a) The computed interface at
t = 0, t = 7.0172, t = 21.0867, andt = 35.1563. (b) The initial interfacet = 0 and the computed interface at
t = 100.

one dimensional. Therefore we can afford to store the interface at many different time
levels. In Fig. 5a, we plotted the interface att = 0, t = 7.0172, t = 21.0867, andt =
35.1563. The relative error in the area is 0.25% att = 7.0172, 0.45% att = 21.0867,
and 0.47% att = 35.1563. In Fig. 5b, we plotted the interface att = 0, and t = 100,
which is almost in the equilibrium state, a circle. The relative area change (loss) att = 100
is about 1.61%. Note that, in the equilibrium state, the velocity approaches zero every-
where and the pressure approaches two different constants inside and outside the inter-
face.

In Table VI, we perform the grid refinement analysis at timet = 15. Since the exact
solution is not available, we calculate the error between the computed solution and the
one obtained by the finest grid, 512 by 512. We denote such error asẼN , for example,
ẼN(p) = ‖pN − p512‖∞. For a second-order method, the error ratioẼN/Ẽ2N is close to 4
if N is much smaller than 512, the finest number of the grid lines. The ratio approaches 5
asN is getting closer to the finest number of the grid lines; see [22] for the methodology.
From Table VI, we can see that our method behaves like a second-order method and agrees
with the results of other examples in this section.

TABLE VI

The Grid Refinement Analysis of Projection-IIM Applied to Example 5 at t = 15

N ‖ẼN(u)‖∞ ·‖ẼN/2(u)‖∞/‖ẼN(u)‖∞ ‖ẼN(p)‖∞ ‖ẼN/2(p)‖∞/‖ẼN(p)‖∞
32 1.8080× 10−3 0.2427
64 4.5062× 10−4 4.0123 0.0717 3.3849

128 1.1920× 10−4 3.7804 0.0181 3.9613
256 2.4400× 10−5 4.8852 4.2500× 10−3 4.2588

Note.The error is computed against the result obtained using the finest grid 512 by 512.
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5. CONCLUSIONS

We have developed an immersed interface method coupled with the projection method
for the full incompressible Navier–Stokes equations that involve a singular force along
one or several interfaces. We derived some useful interface relations that are used to deter-
mine the correction terms to the original projection method. The new projection-IIM method
has the same stability nature as the original projection method since only the right-hand
sides in the projection method are modified. The numerical results show second-order con-
vergence for the projection-IIM method. The computed solutions remain sharp across the
interface since the jump conditions are enforced.

We also propose a new approach of the Immersed Boundary Method when the interface
is represented by a level set function. Instead of using the discrete delta function directly for
the level set function with larger width

√
h, we use the projections of irregular grid points

on the interface as the control points, and then use the original Immersed Boundary Method
with the width beingw = h.

Research is under way for the Navier–Stokes equations that involves not only a singular
force along one or several interfaces but also discontinuities in the density and the viscosity.
The success of the new method depends on whether we can derive the jump conditions for
the velocity and the pressure.
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